Copied to
clipboard

G = C32×C4.10D4order 288 = 25·32

Direct product of C32 and C4.10D4

direct product, metabelian, nilpotent (class 3), monomial

Aliases: C32×C4.10D4, (C2×C12).4C12, (C6×C12).14C4, C12.76(C3×D4), (C2×C4).2C62, (C6×Q8).22C6, (C3×C12).177D4, C22.4(C6×C12), C62.90(C2×C4), C4.10(D4×C32), (C3×M4(2)).9C6, M4(2).1(C3×C6), (C6×C12).259C22, (C32×M4(2)).5C2, (C2×C4).(C3×C12), (Q8×C3×C6).11C2, (C2×Q8).3(C3×C6), (C2×C6).31(C2×C12), (C2×C12).68(C2×C6), C6.32(C3×C22⋊C4), C2.5(C32×C22⋊C4), (C3×C6).81(C22⋊C4), SmallGroup(288,319)

Series: Derived Chief Lower central Upper central

C1C22 — C32×C4.10D4
C1C2C4C2×C4C2×C12C6×C12C32×M4(2) — C32×C4.10D4
C1C2C22 — C32×C4.10D4
C1C3×C6C6×C12 — C32×C4.10D4

Generators and relations for C32×C4.10D4
 G = < a,b,c,d,e | a3=b3=c4=1, d4=c2, e2=dcd-1=c-1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ce=ec, ede-1=c-1d3 >

Subgroups: 156 in 114 conjugacy classes, 72 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C32, C12, C12, C2×C6, M4(2), C2×Q8, C3×C6, C3×C6, C24, C2×C12, C3×Q8, C4.10D4, C3×C12, C3×C12, C62, C3×M4(2), C6×Q8, C3×C24, C6×C12, C6×C12, Q8×C32, C3×C4.10D4, C32×M4(2), Q8×C3×C6, C32×C4.10D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C32, C12, C2×C6, C22⋊C4, C3×C6, C2×C12, C3×D4, C4.10D4, C3×C12, C62, C3×C22⋊C4, C6×C12, D4×C32, C3×C4.10D4, C32×C22⋊C4, C32×C4.10D4

Smallest permutation representation of C32×C4.10D4
On 144 points
Generators in S144
(1 103 95)(2 104 96)(3 97 89)(4 98 90)(5 99 91)(6 100 92)(7 101 93)(8 102 94)(9 106 130)(10 107 131)(11 108 132)(12 109 133)(13 110 134)(14 111 135)(15 112 136)(16 105 129)(17 121 113)(18 122 114)(19 123 115)(20 124 116)(21 125 117)(22 126 118)(23 127 119)(24 128 120)(25 49 41)(26 50 42)(27 51 43)(28 52 44)(29 53 45)(30 54 46)(31 55 47)(32 56 48)(33 137 81)(34 138 82)(35 139 83)(36 140 84)(37 141 85)(38 142 86)(39 143 87)(40 144 88)(57 77 65)(58 78 66)(59 79 67)(60 80 68)(61 73 69)(62 74 70)(63 75 71)(64 76 72)
(1 23 47)(2 24 48)(3 17 41)(4 18 42)(5 19 43)(6 20 44)(7 21 45)(8 22 46)(9 138 78)(10 139 79)(11 140 80)(12 141 73)(13 142 74)(14 143 75)(15 144 76)(16 137 77)(25 97 121)(26 98 122)(27 99 123)(28 100 124)(29 101 125)(30 102 126)(31 103 127)(32 104 128)(33 57 129)(34 58 130)(35 59 131)(36 60 132)(37 61 133)(38 62 134)(39 63 135)(40 64 136)(49 89 113)(50 90 114)(51 91 115)(52 92 116)(53 93 117)(54 94 118)(55 95 119)(56 96 120)(65 105 81)(66 106 82)(67 107 83)(68 108 84)(69 109 85)(70 110 86)(71 111 87)(72 112 88)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 75 77 79)(74 80 78 76)(81 83 85 87)(82 88 86 84)(89 91 93 95)(90 96 94 92)(97 99 101 103)(98 104 102 100)(105 107 109 111)(106 112 110 108)(113 115 117 119)(114 120 118 116)(121 123 125 127)(122 128 126 124)(129 131 133 135)(130 136 134 132)(137 139 141 143)(138 144 142 140)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 60 7 62 5 64 3 58)(2 61 4 59 6 57 8 63)(9 127 11 125 13 123 15 121)(10 124 16 126 14 128 12 122)(17 130 23 132 21 134 19 136)(18 131 20 129 22 135 24 133)(25 138 31 140 29 142 27 144)(26 139 28 137 30 143 32 141)(33 46 39 48 37 42 35 44)(34 47 36 45 38 43 40 41)(49 82 55 84 53 86 51 88)(50 83 52 81 54 87 56 85)(65 94 71 96 69 90 67 92)(66 95 68 93 70 91 72 89)(73 98 79 100 77 102 75 104)(74 99 76 97 78 103 80 101)(105 118 111 120 109 114 107 116)(106 119 108 117 110 115 112 113)

G:=sub<Sym(144)| (1,103,95)(2,104,96)(3,97,89)(4,98,90)(5,99,91)(6,100,92)(7,101,93)(8,102,94)(9,106,130)(10,107,131)(11,108,132)(12,109,133)(13,110,134)(14,111,135)(15,112,136)(16,105,129)(17,121,113)(18,122,114)(19,123,115)(20,124,116)(21,125,117)(22,126,118)(23,127,119)(24,128,120)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,137,81)(34,138,82)(35,139,83)(36,140,84)(37,141,85)(38,142,86)(39,143,87)(40,144,88)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,23,47)(2,24,48)(3,17,41)(4,18,42)(5,19,43)(6,20,44)(7,21,45)(8,22,46)(9,138,78)(10,139,79)(11,140,80)(12,141,73)(13,142,74)(14,143,75)(15,144,76)(16,137,77)(25,97,121)(26,98,122)(27,99,123)(28,100,124)(29,101,125)(30,102,126)(31,103,127)(32,104,128)(33,57,129)(34,58,130)(35,59,131)(36,60,132)(37,61,133)(38,62,134)(39,63,135)(40,64,136)(49,89,113)(50,90,114)(51,91,115)(52,92,116)(53,93,117)(54,94,118)(55,95,119)(56,96,120)(65,105,81)(66,106,82)(67,107,83)(68,108,84)(69,109,85)(70,110,86)(71,111,87)(72,112,88), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108)(113,115,117,119)(114,120,118,116)(121,123,125,127)(122,128,126,124)(129,131,133,135)(130,136,134,132)(137,139,141,143)(138,144,142,140), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,60,7,62,5,64,3,58)(2,61,4,59,6,57,8,63)(9,127,11,125,13,123,15,121)(10,124,16,126,14,128,12,122)(17,130,23,132,21,134,19,136)(18,131,20,129,22,135,24,133)(25,138,31,140,29,142,27,144)(26,139,28,137,30,143,32,141)(33,46,39,48,37,42,35,44)(34,47,36,45,38,43,40,41)(49,82,55,84,53,86,51,88)(50,83,52,81,54,87,56,85)(65,94,71,96,69,90,67,92)(66,95,68,93,70,91,72,89)(73,98,79,100,77,102,75,104)(74,99,76,97,78,103,80,101)(105,118,111,120,109,114,107,116)(106,119,108,117,110,115,112,113)>;

G:=Group( (1,103,95)(2,104,96)(3,97,89)(4,98,90)(5,99,91)(6,100,92)(7,101,93)(8,102,94)(9,106,130)(10,107,131)(11,108,132)(12,109,133)(13,110,134)(14,111,135)(15,112,136)(16,105,129)(17,121,113)(18,122,114)(19,123,115)(20,124,116)(21,125,117)(22,126,118)(23,127,119)(24,128,120)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,137,81)(34,138,82)(35,139,83)(36,140,84)(37,141,85)(38,142,86)(39,143,87)(40,144,88)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,23,47)(2,24,48)(3,17,41)(4,18,42)(5,19,43)(6,20,44)(7,21,45)(8,22,46)(9,138,78)(10,139,79)(11,140,80)(12,141,73)(13,142,74)(14,143,75)(15,144,76)(16,137,77)(25,97,121)(26,98,122)(27,99,123)(28,100,124)(29,101,125)(30,102,126)(31,103,127)(32,104,128)(33,57,129)(34,58,130)(35,59,131)(36,60,132)(37,61,133)(38,62,134)(39,63,135)(40,64,136)(49,89,113)(50,90,114)(51,91,115)(52,92,116)(53,93,117)(54,94,118)(55,95,119)(56,96,120)(65,105,81)(66,106,82)(67,107,83)(68,108,84)(69,109,85)(70,110,86)(71,111,87)(72,112,88), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,99,101,103)(98,104,102,100)(105,107,109,111)(106,112,110,108)(113,115,117,119)(114,120,118,116)(121,123,125,127)(122,128,126,124)(129,131,133,135)(130,136,134,132)(137,139,141,143)(138,144,142,140), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,60,7,62,5,64,3,58)(2,61,4,59,6,57,8,63)(9,127,11,125,13,123,15,121)(10,124,16,126,14,128,12,122)(17,130,23,132,21,134,19,136)(18,131,20,129,22,135,24,133)(25,138,31,140,29,142,27,144)(26,139,28,137,30,143,32,141)(33,46,39,48,37,42,35,44)(34,47,36,45,38,43,40,41)(49,82,55,84,53,86,51,88)(50,83,52,81,54,87,56,85)(65,94,71,96,69,90,67,92)(66,95,68,93,70,91,72,89)(73,98,79,100,77,102,75,104)(74,99,76,97,78,103,80,101)(105,118,111,120,109,114,107,116)(106,119,108,117,110,115,112,113) );

G=PermutationGroup([[(1,103,95),(2,104,96),(3,97,89),(4,98,90),(5,99,91),(6,100,92),(7,101,93),(8,102,94),(9,106,130),(10,107,131),(11,108,132),(12,109,133),(13,110,134),(14,111,135),(15,112,136),(16,105,129),(17,121,113),(18,122,114),(19,123,115),(20,124,116),(21,125,117),(22,126,118),(23,127,119),(24,128,120),(25,49,41),(26,50,42),(27,51,43),(28,52,44),(29,53,45),(30,54,46),(31,55,47),(32,56,48),(33,137,81),(34,138,82),(35,139,83),(36,140,84),(37,141,85),(38,142,86),(39,143,87),(40,144,88),(57,77,65),(58,78,66),(59,79,67),(60,80,68),(61,73,69),(62,74,70),(63,75,71),(64,76,72)], [(1,23,47),(2,24,48),(3,17,41),(4,18,42),(5,19,43),(6,20,44),(7,21,45),(8,22,46),(9,138,78),(10,139,79),(11,140,80),(12,141,73),(13,142,74),(14,143,75),(15,144,76),(16,137,77),(25,97,121),(26,98,122),(27,99,123),(28,100,124),(29,101,125),(30,102,126),(31,103,127),(32,104,128),(33,57,129),(34,58,130),(35,59,131),(36,60,132),(37,61,133),(38,62,134),(39,63,135),(40,64,136),(49,89,113),(50,90,114),(51,91,115),(52,92,116),(53,93,117),(54,94,118),(55,95,119),(56,96,120),(65,105,81),(66,106,82),(67,107,83),(68,108,84),(69,109,85),(70,110,86),(71,111,87),(72,112,88)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,75,77,79),(74,80,78,76),(81,83,85,87),(82,88,86,84),(89,91,93,95),(90,96,94,92),(97,99,101,103),(98,104,102,100),(105,107,109,111),(106,112,110,108),(113,115,117,119),(114,120,118,116),(121,123,125,127),(122,128,126,124),(129,131,133,135),(130,136,134,132),(137,139,141,143),(138,144,142,140)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,60,7,62,5,64,3,58),(2,61,4,59,6,57,8,63),(9,127,11,125,13,123,15,121),(10,124,16,126,14,128,12,122),(17,130,23,132,21,134,19,136),(18,131,20,129,22,135,24,133),(25,138,31,140,29,142,27,144),(26,139,28,137,30,143,32,141),(33,46,39,48,37,42,35,44),(34,47,36,45,38,43,40,41),(49,82,55,84,53,86,51,88),(50,83,52,81,54,87,56,85),(65,94,71,96,69,90,67,92),(66,95,68,93,70,91,72,89),(73,98,79,100,77,102,75,104),(74,99,76,97,78,103,80,101),(105,118,111,120,109,114,107,116),(106,119,108,117,110,115,112,113)]])

99 conjugacy classes

class 1 2A2B3A···3H4A4B4C4D6A···6H6I···6P8A8B8C8D12A···12P12Q···12AF24A···24AF
order1223···344446···66···6888812···1212···1224···24
size1121···122441···12···244442···24···44···4

99 irreducible representations

dim111111112244
type++++-
imageC1C2C2C3C4C6C6C12D4C3×D4C4.10D4C3×C4.10D4
kernelC32×C4.10D4C32×M4(2)Q8×C3×C6C3×C4.10D4C6×C12C3×M4(2)C6×Q8C2×C12C3×C12C12C32C3
# reps121841683221618

Matrix representation of C32×C4.10D4 in GL6(𝔽73)

6400000
0640000
008000
000800
000080
000008
,
800000
080000
001000
000100
000010
000001
,
7200000
0720000
00727100
001100
002727072
0004610
,
0270000
4600000
00460710
000011
0001270
0010460
,
0460000
4600000
003201261
00570012
006675716
00061657

G:=sub<GL(6,GF(73))| [64,0,0,0,0,0,0,64,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,1,27,0,0,0,71,1,27,46,0,0,0,0,0,1,0,0,0,0,72,0],[0,46,0,0,0,0,27,0,0,0,0,0,0,0,46,0,0,1,0,0,0,0,1,0,0,0,71,1,27,46,0,0,0,1,0,0],[0,46,0,0,0,0,46,0,0,0,0,0,0,0,32,57,6,0,0,0,0,0,67,6,0,0,12,0,57,16,0,0,61,12,16,57] >;

C32×C4.10D4 in GAP, Magma, Sage, TeX

C_3^2\times C_4._{10}D_4
% in TeX

G:=Group("C3^2xC4.10D4");
// GroupNames label

G:=SmallGroup(288,319);
// by ID

G=gap.SmallGroup(288,319);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-2,504,533,1016,6304,4548,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^4=1,d^4=c^2,e^2=d*c*d^-1=c^-1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations

׿
×
𝔽